Fractals and fractal dimension of systems of blood vessels: An analogy between artery trees, river networks, and urban hierarchies
نویسنده
چکیده
An analogy between the fractal nature of networks of arteries and that of systems of rivers has been drawn in the previous works. However, the deep structure of the hierarchy of blood vessels has not yet been revealed. This paper is devoted to researching the fractals, allometric scaling, and hierarchy of blood vessels. By analogy with Horton-Strahler’s laws of river composition, three exponential laws have been put forward. These exponential laws can be reconstructed and transformed into three linear scaling laws, which can be named composition laws of blood vessels network. From these linear scaling laws it follows a set of power laws, including the three-parameter Zipf’s law on the rank-size distribution of blood vessel length and the allometric scaling law on the length-diameter relationship of blood vessels in different orders. The models are applied to the observed data on human beings and animals early given by other researchers, and an interesting finding is that human bodies more conform to natural rules than dog’s bodies. An analogy between the hierarchy of blood vessels, river networks, and urban systems are further drawn, and interdisciplinary studies of hierarchies will probably provide new revealing examples for the science of complexity.
منابع مشابه
Chaotic Analysis and Prediction of River Flows
Analyses and investigations on river flow behavior are major issues in design, operation and studies related to water engineering. Thus, recently the application of chaos theory and new techniques, such as chaos theory, has been considered in hydrology and water resources due to relevant innovations and ability. This paper compares the performance of chaos theory with Anfis model and discusses ...
متن کاملComparison Density and Fractal Dimension of Drainage Networks in Different Scales and Precision Different (Case Study: Ilam Watersheds)
Every phenomena in the nature, despite the complexity of the subject, has certain rules and regulations. River pattern and behavior as one of the most complex natural phenomena to this is not an exception. Depending on geomorphologic, climatic, topographic and erosive conditions, the waterways exhibit different patterns and behaviors. One of the parameters which can be achieved using the comple...
متن کاملThe Application of fractal dimension and morphometric properties of drainage networks in the analysis of formation sensibility in arid areas (Case Study, Yazd-Ardakan Basin)
Introduction: Many natural phenomena have many variables that make it difficult to find relationships between them using common mathematical methods. This problem, along with the impossibility of measuring all elements of nature, has led to a major evolution in the way of understanding and explaining phenomena. In this way, one can use the fractal geometry with the theory that many natural phen...
متن کاملSelf-similar fractals and arithmetic dynamics
The concept of self-similarity on subsets of algebraic varieties is defined by considering algebraic endomorphisms of the variety as `similarity' maps. Self-similar fractals are subsets of algebraic varieties which can be written as a finite and disjoint union of `similar' copies. Fractals provide a framework in which, one can unite some results and conjectures in Diophantine g...
متن کاملNetworks with side branching in biology.
There are many examples of branching networks in biology. Examples include the structure of plants and trees as well as cardiovascular and bronchial systems. In many cases these networks are self-similar and exhibit fractal scaling. In this paper we introduce the Tokunaga taxonomy for the side branching of networks and his parameterization of self-similar side-branching. We introduce several ex...
متن کامل